
WHITE PAPER
August 2025

The Upside-Down
Economics of DIY PaaS
Seven pitfalls of building 				
your own platform

White Paper | 3

The Upside-Down Economics of DIY PaaS

Table of contents
Focus on What Sets You Apart. . 4

Platforms Don’t Differentiate, Apps Do. . 4

The 7 DIY Pitfalls. . 5

1. Building a platform for one app, not hundreds of apps	 5

2. Underestimating the ongoing investment	 7

3. Assuming the platform is ever “done”	 9

4. Frozen in place by snowflakes	 10

5. Retaining skilled people	 12

6. Keeping up with security and compliance	 13

7. Resume-driven development	 14

Avoiding the AI Platform Treadmill. . 15

Build Your Platform Strategy Around Business Value 16

Tanzu Platform: Deliver Apps Faster with a Trusted, End-to-End PaaS. 17

White Paper | 4

The Upside-Down Economics of DIY PaaS

Focus on What Sets You Apart
Platforms are only valuable because of the applications they run.
Following sound strategic principles, this means you should buy a
platform instead of building one. Buying a platform frees you to focus
your time, talent, and budget on what makes your organization distinct—
and delivers the most value.

When it comes to applications and platforms, applications are clearly the most
valuable of the two. They’re how your organization engages customers, serves
citizens, and empowers employees. They’re how your business functions. The
platform exists to support those applications, not to compete for attention or
resources. You can see this clearly when you imagine a platform with no
applications running on it: it delivers no value to the business. The platform only
matters because of what runs on top of it.

Choosing whether to build your own platform or not is a classic strategic
question. The cheat code to answer it goes back to 1817, when David Ricardo
introduced the principle of comparative advantage: even if you’re capable of
doing everything well, you’ll achieve better results by focusing on what you do
best and partnering or trading for the rest. Ricardo’s case study was that
Portugal could produce both wine and cloth, but it specialized in wine and
traded for cloth with Britain, because that focus maximized its returns.

This strategic principle appears repeatedly, from Ricardo to Michael Porter, to
management consulting frameworks, and, most recently, in Simon Wardley’s
maps. The guidance is consistent: Direct your effort toward what you’re best at
and what makes your organization stand out, i.e., your differentiation. For most
organizations, that’s your applications. Your apps are what deliver business
value. Unless your product is a platform, building and maintaining one isn’t a
strategic advantage, it’s just infrastructure. Necessary, but undifferentiating.

Platforms Don’t Differentiate, Apps Do
When you build your own platform, your developers must focus on container
orchestration, stitching together infrastructure layers, writing YAML files,
debugging service integrations, and numerous other tasks that occur below the
application. They’re not improving the business by focusing on applications,
they’re rebuilding the plumbing.

DIY efforts divert your best people to infrastructure tasks that don’t generate
direct business value, and that drag will compound for years. Once you see it
this way, it’s hard to unsee. And yet, many organizations still fall into the trap of
building their own platform.

That’s where the real risk begins.

What About Government?
This principle applies just as strongly in
the public sector. While government
agencies aren’t competing for market
share, they still face real pressure: limited
resources, high expectations, and the
mandate to deliver services that work for
everyone. In that context, building your
own platform isn’t just a distraction, it’s a
drain.

The goal isn’t profit, but effective, reliable
delivery. Every hour your team spends
wiring together infrastructure is time not
spent improving the citizen experience,
ensuring mission effectiveness,
modernizing core services, or addressing
policy outcomes and compliance. Just
as in the private sector, the platform is
essential—but it’s not where your focus
should be.

https://en.wikipedia.org/wiki/Comparative_advantage
https://en.wikipedia.org/wiki/Competitive_advantage
https://en.wikipedia.org/wiki/Wardley_map
https://en.wikipedia.org/wiki/Wardley_map

White Paper | 5

The Upside-Down Economics of DIY PaaS

The 7 DIY Pitfalls
So far, we’ve looked at why building your own platform does not align with
established business philosophy and strategic thinking. This can be a bit too
academic for those who are getting their hands dirty with building and running
platforms. Let’s examine the practical reasons why building your own platform
is a bad strategy by considering seven common pitfalls that organizations
often encounter.

1. Building a platform for one app, not hundreds of apps
Most DIY efforts start by solving a narrow problem: How do we get this one app
deployed? This typically involves setting up containers, scripting a CI/CD
pipeline, adding Kubernetes, and integrating basic logging and monitoring. With
a control plane project and a bit of YAML, it can feel like you’re 90% done.

Except you’re not. You’ve solved “day one” for a single app. What comes next—
day two and beyond—is where the real complexity lives. You now need backup
and restore, patch management, observability, service discovery, RBAC, auditing,
multi-tenancy, platform upgrades, vulnerability scanning, high availability, and
eventually, things like multi-region deployment or sovereign cloud support.
Everything needs to be consistent, secure, and usable across teams.

And this isn’t just for one app; it’s for hundreds, maybe thousands. A platform
only delivers value when it supports many applications and teams. That means
supporting diverse architectures, languages, services, and deployment models.
It also involves integrating with infrastructure, production controls, compliance
tooling, and more.

The CNCF’s platform reference architecture, shown below, provides a sense of
this full scope. Much of the discussion around “internal developer platforms”
focuses on the top layer—interfaces. But building a real platform means
delivering every box in that diagram. And each one adds time, effort, and
headcount.

Teams building their own platform
often underestimate the scope,
focusing on the needs of one app
and one team instead of hundreds or
thousands.

Figure 1. CNCF platform reference architecture

https://tag-app-delivery.cncf.io/whitepapers/platforms/

White Paper | 6

The Upside-Down Economics of DIY PaaS

You’re not just building tools. You’re building a product—or more accurately, a
suite of products.

To succeed, you’ll need more than engineers. You’ll need product managers, UX
designers, back-end developers, front-end developers—and you’ll need them
continuously, not just for the initial build. And once it’s built, you still have to run
it, support it, and train developers to use it. The idea that the same team can do
all of this while also delivering features for their “real” job is a dangerous
assumption.

Operating at scale

Most DIY platforms begin small, with one team and a few workloads. At that
scale, it’s easy to think your handcrafted stack is “good enough.” But as
adoption grows, so does the complexity—and the cracks start to show.

If you plan to scale later, build for scale now. Especially in large organizations,
the real payoff of a platform comes from standardization and shared
infrastructure across many teams. Even if you start with a handful of apps, it’s
smarter to begin with a platform that’s designed to support real growth.

White Paper | 7

The Upside-Down Economics of DIY PaaS

2. Underestimating the ongoing investment
The unspoken assumptions behind most DIY efforts are simple and seductive:
we’ll just download open source components, hook them together, and build
our own platform in our spare time. How hard can it be?

Very hard. Very expensive.

As covered in the first pitfall, a real platform is not a toolchain or just an
integrated stack of infrastructure residing behind a self-service portal. Building
and maintaining an enterprise platform requires several teams responsible for
reliability, usability, velocity, and roadmap. According to the CNCF maturity
model, this means product managers, user research, documentation,
onboarding, SLAs, and constant iteration.

It’s not uncommon for these teams to add up to 50 or 60 people. It often takes
them two years to build a DIY platform that comes close to matching the
stability, security, and self-service of a commercial alternative. That’s about $7
million a year in payroll alone. The cumulative expenses in headcount alone add
up quickly over the years, as the table below shows:

Seven Agile (Scrum)
Product Teams

(To Align With Reference
Architecture Capability Domains)

1.	Infrastructure

1.	Operations

2.	Deployment

3.	Runtime & Middleware

4.	Database

5.	Security

6.	Coaching & Developer
Enablement
(to train the developers on
the platform)

Total of approximately
60 resources to build an
enterprise cloud native

platform team

•	 Each product team
requires an average of 7-9
engineers per team (two-
pizza teams)

•	 Scrum master shared
across 2-3 teams

•	 Product owners shared
across 2-3 teams

Total Payroll Cost of DIY
Platform Engineering

Team

•	 2 years

•	 7 teams

•	 x8 people

•	 x $125k/year

•	 ~$7,000,000 per year
in payroll

Figure 2. DIY Platform Engineering Team Structure

Your DIY platform doesn’t just need
code. It needs teams, processes, and
years of full-time effort.

White Paper | 8

The Upside-Down Economics of DIY PaaS

Annual Year 1 Year 2 Year 3 Year 4 Year 5

of teams 7 $7,000,000 $7,000,000 $7,000,000 $7,000,000 $7,000,000

Scrum

Masters
2 $250,000 $250,000 $250,000 $250,000 $250,000

Product

Owners
2 $250,000 $250,000 $250,000 $250,000 $250,000

Total/year $7,500,000 $7,500,000 $7,500,000 $7,500,000 $7,500,000

Cumulative $7,500,000 $15,000,000 $22,500,000 $30,000,000 $37,500,000

Headcount 60 60 60 60 60

It’s important to look at the cumulative spend over the years, as the above does.
This is because you need to continually add new features to the platform, in
addition to basic bug fixing, maintenance, and security patches. You can’t
reassign the platform builders to app development without the platform
decaying underneath you. That team, dozens of engineers, plus scrum masters
(or whatever similar role you might have), product managers, and developer
enablement staff, have to stay in place.

Building and fully owning your own platform demands significantly more staffing
than simply running, maintaining, and evolving a platform that has been built
and supported by a vendor, especially when that vendor is backed by a broad
ecosystem of partners and open source communities. The burden of integration,
support, evolution, and documentation all falls on your team.

In contrast, teams that purchase a platform, like VMware Tanzu Platform, can
operate the platform with anywhere from 4 to 10 platform engineers on average.
This applies to all layers of the platform, covering the entire platform. This is
because they rely on the vendor to keep the platform up to date and to add new
features. Considering ROI in terms of the minimal number of personnel required
to support a large number of applications and developers is often more revealing
than modeling costs as done above.

When you build your own platform, you’re not saving money, you’re just
swapping software costs for people costs. And often, you end up spending more
time and money to produce a platform that’s less capable, less innovative, and
slower to evolve than what you could have bought.

Tanzu Platform Staffing
Here are some samples of the number
of operators needed to run the Tanzu
Platform:

•	350 apps supported by 7 platform
engineers

•	300 apps supported by 8 platform
engineers

•	1,200 developers supported by 6
platform engineers

•	2,500 developers supported by 5
platform engineers

•	45 app teams supported by 1 ops team

Sources: Broadcom internal analysis of customer
data from retail and manufacturing enterprises
based in North America and Europe, June 2025.

Figure 3. Cumulative spend over 5 year period for DIY platform

White Paper | 9

The Upside-Down Economics of DIY PaaS

3. Assuming the platform is ever “done”
Your company has invested in building a custom platform. It hits version 1.0, and
the plan is to turn it over to a support team while reassigning the original
engineers to other priorities. The assumption? It’s “done.”

If your platform is truly a product, then it’s never done, only shipped.

Every part of your platform will need to change: APIs, integrations, compliance
features, data layers, security patches, telemetry dashboards, and developer
tooling. Each product team inside the platform organization owns a piece of this
and is responsible for:

•	 Continuously developing and evolving their services to meet user needs

•	 Testing, integrating, and delivering updates using CI/CD practices

•	 Monitoring and reporting on performance, uptime, and business outcomes

•	 Adapting to support new runtime stacks, languages, and AI workloads

•	 Staying ahead of security, audit, and policy requirements

•	 Coordinating with developer experience teams to ensure usability and
onboarding

You don’t need a support desk. You need an ongoing product organization.

Very few companies can justify the long-term investment to maintain this pace
internally. The innovation curve from commercial vendors outstrips most DIY
efforts within 12–18 months. Meanwhile, the internal platform team gets bogged
down in operational fire drills and incremental maintenance. Over time, the
velocity gap becomes a strategic liability.

Looking at the CNCF Platform Engineering Maturity Model, you can see that the
responsibility for the platform’s functionality grows as more and more apps run
on the platform. This drives more dedicated platform product managers to plan,
prioritize, and evolve those capabilities based on real user needs.

Even if you buy a platform, you still need product management. But the job is
smaller, clearer, and more focused on integration and developer experience. In
a DIY scenario, that product manager is overwhelmed, forced to act as an
orchestrator across multiple custom components, integrations, and internal
infrastructure teams. And not just one product manager: most DIY efforts
require several product managers just to keep the lights on. You’ve traded
vendor complexity for internal coordination overhead, and that scales poorly.

A real platform isn’t a project - it’s a
product. And products evolve over a
long lifetime.

White Paper | 10

The Upside-Down Economics of DIY PaaS

4. Frozen in place by snowflakes
Concerns about lock-in often sound like this: “We must avoid lock-in to maintain
leverage over our suppliers. Open source means we can control our fate, avoid
vendor pressure, and switch infrastructure providers whenever we need to. No
one will hold us hostage. And it’ll probably be cheaper too.

Yes, open source can help avoid vendor lock-in. But stitching those open source
components into a homegrown platform often creates something worse: internal
lock-in.

Your organization ends up with a unique, one-off snowflake—a platform that
only exists inside your company. It’s built differently, behaves differently, and
must be learned from scratch by every new platform engineer, operations
person, developer, product manager, tester, and so on. Documentation is weak,
tribal knowledge is strong, and onboarding becomes expensive and slow.
Worse, if key individuals leave, you risk losing critical operational and
architectural understanding.

This isn’t just inconvenient, it’s dangerous. You’ve locked yourself into a platform
of one.

A commercial platform backed by an open source foundation offers a better
balance. You still avoid hard vendor lock-in, but you gain shared understanding,
documentation, and institutional knowledge. With a commercial product:

•	 Engineering is consistent and coherent; the parts are designed to work
together.

•	 Knowledge is open and accessible through docs, wikis, and open source
repos.

•	 Expertise is widely distributed, across customers, contributors, and
partners.

•	 Value-added components, training, and enterprise support are optional but
available.

You’re still free to run on any major public or private cloud. That’s because the
best commercial platforms are designed for portability—not just across clouds,
but across teams.

True portability means standardizing how apps are deployed and operated,
regardless of the underlying infrastructure. Too much flexibility creates chaos.
Too little creates rigidity. A well-designed platform lets you hit the right balance:
enough consistency to scale, enough flexibility to adapt.

Instead of worrying about lock-in, focus on “the freedom to leave.” This is
another way of saying “application portability” i.e., how easily could you migrate
off the platform if needed? When you reframe “lock-in avoidance” as a question
of real-world portability, you can think about it more analytically.

The “freedom to leave” framing allows you to evaluate portability alongside
other trade-offs: speed, cost, security, maintainability, and ecosystem maturity.

DIY platforms don’t eliminate lock-in,
they internalize it.

https://webmink.com/essays/freedom-to-leave/

White Paper | 11

The Upside-Down Economics of DIY PaaS

You may decide that full portability isn’t worth the trade-offs it demands—like
using a general-purpose framework instead of one optimized for your use case,
or that some vendor alignment is a fair trade for a better developer experience
that only they provide.

You want to make a deliberate choice, not just react out of un-analyzed fear.
More importantly, you’re evaluating all the options with clarity. There’s no rule
that says only vendor-backed platforms lack portability. Any platform—whether
bought or built—deserves scrutiny. Analyze portability on its own terms, not just
as a reflex against vendor involvement.

White Paper | 12

The Upside-Down Economics of DIY PaaS

5. Retaining skilled people
Staffing quickly becomes a challenge. You’ll need a rare mix of skills:
infrastructure expertise (including cloud, networking, and virtualization), security
and compliance knowledge, application development experience, and the ability
to write solid system code. Few people have all of these. That means investing
significant time in training and increasing your budget to recruit the right people.

Even if you succeed in building this talent pool, the clock starts ticking. Most
organizations have a two- to three-year window before those skilled engineers
start leaving. Other companies—especially vendors and cloud providers—are
dealing with the same challenges and will be eager to hire from you. And they
often offer higher compensation, better career growth, and more attractive
brands than non-tech organizations.

You can try to mitigate this risk. But in our experience, staff retention
consistently becomes a major strategic liability.

Retaining staff skilled at building
platforms is difficult and costly.

White Paper | 13

The Upside-Down Economics of DIY PaaS

6. Keeping up with security and compliance
Staying compliant with standards and regulations is a constant game of Whac-a-
Mole, especially for global organizations that must comply with regulations in
multiple regions and industry groups.

When you build your own platform, that burden is yours. Your team is
responsible for understanding every requirement, implementing the necessary
controls, and maintaining compliance as regulations evolve. Add new features?
That’s more compliance work. Enter a new region? Even more.

Security is no different. Every new CVE (Common Vulnerability and Exposure)
becomes your problem. Your team must track vulnerabilities across every layer
of the stack, trace how those vulnerabilities manifest in your unique platform,
and ship fixes quickly.

One area that often gets overlooked is the application framework layer—the
libraries, SDKs, and services your developers depend on to build apps. These
are constantly evolving and frequently affected by vulnerabilities. Commercial
platforms typically monitor, patch, and roll out updates for these components
automatically. But in a DIY setup, that responsibility shifts to you. Your team has
to track vulnerabilities, test patches, and roll them out across all running
environments.

And unlike with commercial platforms, there’s no vendor pushing patches
behind the scenes. Worse, your platform may introduce entirely new CVEs that
no one else is watching.

By building your own platform, you’re opting out of the collective vigilance of the
tech industry. That choice comes with serious risk.

Security and compliance are one of
the major requirements that separate
enterprise tech from consumer
tech—and they never stop moving,
especially with a platform.”

White Paper | 14

The Upside-Down Economics of DIY PaaS

7. Resume-driven development
Many of the pitfalls we’ve discussed so far touch on strategic choices and project
management challenges. Resume-driven development (RDD), however, is a
particularly insidious pitfall because it stems from within the organization, often a
consequence of misaligned incentives.

In its innocent form, RDD occurs when your staff, fueled by genuine curiosity and
a desire to stay cutting-edge, underestimate the true costs and complexities of
building and maintaining a new platform using the latest technologies. They see
a fascinating new tool and believe it’s the perfect fit, even if it adds unnecessary
burden. In its more cynical manifestation, RDD is less about genuine interest and
more about self-serving ambition: builders advocating for a platform built with
trendy technologies specifically to pad their resumes with highly sought-after
experience.

Regardless of its flavor, RDD carries significant organizational risk. As one study
on this phenomenon notes:

Extensive RDD-based technology selection may therefore lead to complex or
even unmaintainable software consisting of technologies which are not
suitable for the requirements, which are unfamiliar to current or future
employees, or which did not deliver on their promise and were discontinued.

Part of the blame for this incentives problem can be found in the hiring process
itself. Knowing that technical talent is often drawn to novel challenges, those
crafting job descriptions might, perhaps unknowingly, make roles sound more
cutting-edge and trendy than they truly are. This inadvertently fuels a vicious
cycle: prospective employees expect to use new technologies, they actively seek
roles that promise this exposure, and once hired, they then push to build with
these new technologies.

It’s a natural inclination, of course. When you hire people to build systems, it
should come as no surprise that they will, indeed, build systems. This tendency
becomes especially salient when it comes to platforms. As new building blocks
and architectural patterns emerge, these talented builders will be eager to learn
their intricacies and integrate them into new platforms.

However, while there are perfectly valid reasons to adopt and even build with
new technologies, the danger with RDD is that fundamental architectural and
strategic decisions get made based on the individual career development of your
staff, not on the long-term, strategic benefit to the organization. This inherent
conflict of interest can be a costly blind spot.

When contemplating building your own platform, resume-driven development is a
common pitfall that demands careful scrutiny. Be sure to look beyond the allure of
the new and evaluate the true benefits of each option against the comprehensive
costs and risks, many of which are outlined in the preceding sections.

	“Extensive RDD-based technology
selection may therefore lead to
complex or even unmaintainable
software consisting of technologies
which are not suitable for the
requirements, which are unfamiliar
to current or future employees,
or which did not deliver on their
promise and were discontinued.”

“Résumé-Driven Development: A Definition
and Empirical Characterization,” Jonas Fritzsch,
Marvin Wyrich, Justus Bogner, Stefan Wagner,
January 2021. Survey conducted May to July,
2020 with 591 respondents, ~90% in Germany.

Some platform builders are driven
to create value to their resumes over
value to their organization.”

https://arxiv.org/abs/2101.12703
https://arxiv.org/abs/2101.12703
https://arxiv.org/abs/2101.12703
https://arxiv.org/abs/2101.12703

White Paper | 15

The Upside-Down Economics of DIY PaaS

Avoiding the AI Platform Treadmill
As we enter several years of building out generative AI-driven applications, it’s
important to consider AI platforms as well. The pitfalls are largely the same:
building, maintaining, and constantly updating AI infrastructure takes time and
money—resources that could be spent delivering actual applications.

For example, the kind of AI services and infrastructure needed to use AI in
enterprise applications includes model gateways, prompt templates, embedding
stores, vector databases, retrieval pipelines, fine-tuning workflows, policy
enforcement, safety checks, output monitoring, and runtime observability. And
those are just the AI components. You’ll also need SDKs, APIs, and tools your
developers can actually use when building their applications.

Then there’s governance. GenAI systems introduce new risks around privacy,
security, compliance, and unpredictable output. Monitoring for accuracy, bias,
and harmful content isn’t optional—and bolting those capabilities onto a bespoke
system is a major ongoing investment.

All of this “AI middleware” must be integrated, scaled, secured, and maintained
before a single line of app code gets written. As with platform engineering in
general, building this yourself is rarely a sound strategic choice.

Additionally, because the GenAI landscape is evolving rapidly, the APIs and
behaviors your team builds against today may be obsolete within months. New
patterns and protocols, such as the Model Context Protocol, will continue to
emerge and evolve. A DIY AI platform team has to keep pace with these new AI
innovations—more work for your IT staff to take on instead of working on the
applications.

This is the same story we’ve seen with DIY platforms.

Tanzu Platform treats AI services the same way it treats all platform services:
They’re built in, maintained, and kept up to date for you. You get the benefits of
new innovations without the overhead of building or integrating them yourself.
As new capabilities arrive, they’re tightly connected to the platform your
developers already use. In practice, this means teams can start building
AI-powered features right away, without delays or learning yet another stack.
The AI services and AI middleware your developers need is already there—in the
platform you’ve chosen.

For a deeper dive into the pitfalls of the
DIY route, see Camille Crowell-Lee’s
article “Why Build GenAI Apps the Hard
Way? Get an App Platform Instead!”

https://blogs.vmware.com/tanzu/why-build-genai-apps-the-hard-way-get-an-app-platform-instead-2/
https://blogs.vmware.com/tanzu/why-build-genai-apps-the-hard-way-get-an-app-platform-instead-2/

White Paper | 16

The Upside-Down Economics of DIY PaaS

Build Your Platform Strategy Around Business Value
By this point, hopefully you can see that buying a platform is a better option than
building and maintaining on your own. The above can seem confrontational,
maybe even insulting if you’re thinking you’re capable of doing it. Perhaps you
are! However, start with the question “What is the best use of my limited
resources to help meet business goals?” Even if you are incredibly capable and
competent, that brilliance is likely best applied directly to those business goals.
Remember the founding economic principle of comparative advantage: even if
you’re good at something, if you can make more money focusing your efforts on
another line of business, do that if you want more profit. And, if you decide to
build your own platform, enter it with a clear understanding of the pitfalls and
risks above: Be sure to plan for how you will handle them.

Let’s briefly look at the inverse, the benefits of buying a platform:

•	 Faster time to value — Developers start writing and shipping apps
immediately, not waiting months (or years) for infrastructure to stabilize.

•	 Lower ongoing cost — You avoid building and retaining a large platform
engineering organization. Your spending is predictable and efficient.

•	 Predictable cost — Your platform’s costs are known: the license cost and
the number of platform engineers needed. You avoid difficult and often
wrong platform development cost estimates.

•	 Security and compliance controls are built in — You inherit a security
posture that’s actively maintained, tested, and patched by full-time teams,
not your own.

•	 Proven scalability — Commercial platforms are already running thousands
of workloads across enterprises and public sector organizations.

•	 Portability and multi-cloud support — Run your apps across clouds and
regions without rebuilding pipelines and abstractions from scratch.

•	 Reliable support and roadmap — You gain a clear upgrade path, roadmap
alignment, and a partner that’s accountable when things go wrong.

•	 Ecosystem leverage — You benefit from the shared lessons, tools, and
expertise of a global user community—not just your own internal team. For
example, you can get advice from others who’ve been in a similar situation
as yours.

	“What is the best use of my
limited resources to help meet
business goals?”

White Paper | 17

The Upside-Down Economics of DIY PaaS

Tanzu Platform: Deliver Apps Faster with a Trusted,
End-to-End PaaS

Tanzu Platform offers all of this. It’s a proven platform, built on open
technologies and hardened for enterprise and public sector use. For the past ten
years, it’s been used by many Global 2000 companies and government
agencies, running thousands of applications and services around the world.

Developers love it. They can deploy and manage apps on day one, without
worrying about YAML, networking, or orchestration. They get a secure,
compliant, production-ready platform that just works, so they can focus on
building the things that matter.

Even better, if you’re working in a large organization, chances are you already
have it at your disposal, installed, running, and paid for.

Want to learn more? You can check out Tanzu on the website, read this brief
overview of the Tanzu Platform, and contact us: We’re always happy to discuss
Tanzu Platform.

Colophon
This paper was originally written by Jared Ruckle, Bryan Friedman, and Matt Walburn.
Michael Coté updated this paper in 2025.

	“The most outstanding KPI we
achieve is time to market. We can
innovate faster, going from an idea
to an application in production, with
all the necessary tests and security
checks, within one or two business
days. VMware Tanzu Platform and
Tanzu Spring solutions reduce the
complexity and that is what gives
confidence to our developers.”

Jürgen Sußner, Principal Cloud Platform
Engineer, DATEV EG

Figure 4. Tanzu Platform provides necessary services to deliver apps faster using a trusted PaaS

https://www.vmware.com/products/app-platform/tanzu
https://www.vmware.com/docs/solution-brief-vmware-tanzu-platform
https://www.vmware.com/docs/solution-brief-vmware-tanzu-platform
https://go-vmware.broadcom.com/contact-us?utm_source=upsidedownwp&utm_campaign=diyvsbuy&utm_medium=whitepaper

Copyright © 2025 Broadcom. All rights reserved.
The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos
referenced herein belong to their respective companies. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of
this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
Item No: The Upside Down Economics of DIY PaaS_v2 8/25

	_s0o9c63p0ztj
	_z94mztkrlkwb
	_29110jm1qvna
	_aeb5n4xsyeca
	_7q3oel5s8ca9
	_kuiw9hedcx69
	_t6tod4v765ri
	Focus on What Sets You Apart
	Platforms Don’t Differentiate, Apps Do
	The 7 DIY Pitfalls
	1. Building a platform for one app, not hundreds of apps
	2. Underestimating the ongoing investment
	3. Assuming the platform is ever “done”
	4. Frozen in place by snowflakes
	5. Retaining skilled people
	6. Keeping up with security and compliance
	7. Resume-driven development

	Avoiding the AI Platform Treadmill
	Build Your Platform Strategy Around Business Value
	Tanzu Platform: Deliver Apps Faster with a Trusted, End-to-End PaaS

